Abstract

Cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase catalyzes the formation of HMG-CoA, the substrate for the rate-controlling enzyme in the cholesterol biosynthetic pathway. To explore the regulation in liver, we developed a new, accurate, and reliable reversed-phase ion-pair chromatographic assay that uses nonradioactive substrates and n-propionyl coenzyme A as an internal recovery standard. The hepatic activities were measured in rats treated with cholesterol, sitosterol, cholic acid, deoxycholic acid, ursodeoxycholic acid, cholestyramine, bile fistula, lovastatin, and BM 15.766, an inhibitor of 7-dehydrocholesterol delta7-reductase, and were compared with microsomal HMG-CoA reductase and cytosolic acetoacetyl coenzyme A (AcAc-CoA) thiolase activities. HMG-CoA synthase activity was effectively suppressed in synchrony with HMG-CoA reductase activity by treatments with cholesterol (-41%, P < .05), cholic acid (-72%, P < .005), and deoxycholic acid (-62%, P < .05). However, ursodeoxycholic acid increased activity 84% (P < .05) and intravenous sitosterol did not change activity. AcAc-CoA thiolase activities also paralleled HMG-CoA reductase and HMG-CoA synthase activities, but differences were not statistically significant. In contrast to inhibition, up-regulation of hepatic HMG-CoA synthase activities by cholestyramine, bile fistula, and lovastatin was much less than HMG-CoA reductase activities. In addition, BM 15.766 did not stimulate synthase activity, whereas lovastatin increased activity 2.4-fold. Thus, hepatic HMG-CoA synthase activity was regulated coordinately with HMG-CoA reductase, and responded more forcefully to regulatory stimuli than acetoacetyl-CoA thiolase activity but usually less than HMG-CoA reductase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.