Abstract

Spin-coated blend films with complex phase-separated morphology find broad applications while precise tailoring of the morphology is still challenging. In this study, graphene oxide (GO)-based Janus nanosheets were synthesized by interfacial polymerization in a GO nanosheet stabilized Pickering emulsion with polystyrene (PS) and poly(hydroxyethyl methacrylate) synchronously being grafted to the GO nanosheet from the oil and water sides. The Janus nanosheets make the morphology of spin-coated PS/poly(methyl methacrylate)(PMMA) blend films tunable over the full height of the film until the substrate as their preferential assembly at the PS/PMMA interface and attachment on the glass substrate drive the top PS phase to migrate towards the substrate and the bottom PMMA phase to dewet from the substrate towards the air. By varying blend composition and Janus nanosheet loading, morphologies are readily transformed from a PS network on top of PMMA to PS droplets in the PMMA matrix and from PS encapsulated by PMMA to PMMA cavities in the PS network, etc.. This enables generating thin films with various morphologies ranging from a flat surface to cavity-network structures, droplet-matrix structures or bi-continuous structures, etc. at will. Moreover, the morphologies trapped by jammed nanosheets at the interface are super stable against further evolution upon annealing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.