Abstract

BackgroundThe regulatory cyclin, Cyclin T1 (CycT1), is a host factor essential for HIV-1 replication in CD4 T cells and macrophages. The importance of CycT1 and the Positive Transcription Elongation Factor b (P-TEFb) complex for HIV replication is well-established, but regulation of CycT1 expression and protein levels during HIV replication and latency establishment in CD4 T cells is less characterized.MethodsTo better define the regulation of CycT1 levels during HIV replication in CD4 T cells, multiparameter flow cytometry was utilized to study the interaction between HIV replication (intracellular p24) and CycT1 of human peripheral blood memory CD4 T cells infected with HIV in vitro. CycT1 was further examined in CD4 T cells of human lymph nodes.ResultsIn activated (CD3+CD28 costimulation) uninfected blood memory CD4 T cells, CycT1 was most significantly upregulated in maximally activated (CD69+CD25+ and HLA.DR+CD38+) cells. In memory CD4 T cells infected with HIV in vitro, two distinct infected populations of p24+CycT1+ and p24+CycT1- cells were observed during 7 days infection, suggestive of different phases of productive HIV replication and subsequent latency establishment. Intriguingly, p24+CycT1- cells were the predominant infected population in activated CD4 T cells, raising the possibility that productively infected cells may transition into latency subsequent to CycT1 downregulation. Additionally, when comparing infected p24+ cells to bystander uninfected p24- cells (after bulk HIV infections), HIV replication significantly increased T cell activation (CD69, CD25, HLA.DR, CD38, and Ki67) without concomitantly increasing CycT1 protein levels, possibly due to hijacking of P-TEFb by the viral Tat protein. Lastly, CycT1 was constitutively expressed at higher levels in lymph node CD4 T cells compared to blood T cells, potentially enhancing latency generation in lymphoid tissues.ConclusionsCycT1 is most highly upregulated in maximally activated memory CD4 T cells as expected, but may become less associated with T cell activation during HIV replication. The progression into latency may further be predicated by substantial generation of p24+CycT1- cells during HIV replication.

Highlights

  • The regulatory cyclin, Cyclin T1 (CycT1), is a host factor essential for HIV-1 replication in CD4 T cells and macrophages

  • Significant upregulation of cyclin T1 in activated human memory CD4 T cells To first characterize CycT1 protein expression of normal uninfected memory CD4 T cells by flow cytometry, memory CD4+CD45RO+ T cells were purified from peripheral blood of healthy donors and activated by CD3+CD28 mabs and IL2 for up to 5 days

  • The present study suggests that the return of infected activated CD4 T cells to quiescence is preceded by downregulation of CycT1 expression and Positive Transcription Elongation Factor b (P-TEFb) function, significantly restricting HIV replication and promoting latency establishment

Read more

Summary

Introduction

The regulatory cyclin, Cyclin T1 (CycT1), is a host factor essential for HIV-1 replication in CD4 T cells and macrophages. The importance of CycT1 and the Positive Transcription Elongation Factor b (P-TEFb) complex for HIV replication is well-established, but regulation of CycT1 expression and protein levels during HIV replication and latency establishment in CD4 T cells is less characterized. HIV-1 replication is notable for its strict dependence on host factors, of which Cyclin T1 (CycT1) is one of the most essential for viral RNA transcription in CD4 T cells and macrophages. CycT1 is a regulatory subunit that associates with the cyclin-dependent kinase CDK9 to form the Positive Transcription Elongation Factor b (P-TEFb), an enzymatic complex that phosphorylates the C-terminal domain (CTD) of RNA polymerase II (RNAP II) to initiate mRNA transcriptional elongation [1,2,3]. The molecular details and role of P-TEFb and CycT1 for HIV transcription are well defined, but the interaction between CycT1 and HIV replication at single cell levels are less characterized

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call