Abstract

Human SH-SY5Y neuroblastoma cells have been used to investigate mechanisms involved in CREB phosphorylation after activation of two endogenously expressed Gq/11-protein-coupled receptors, the M3 muscarinic acetylcholine (mACh) and B2 bradykinin receptors. Stimulation with either methacholine or bradykinin resulted in maximal increases in CREB phosphorylation within 1min, with either a rapid subsequent decrease (bradykinin) to basal levels, or a sustained response (methacholine). Inhibitor studies were performed to assess the involvement of a number of potential kinases in signalling to CREB phosphorylation. Removal of extracellular Ca2+, inhibition of Ca2+/calmodulin-dependent protein kinase II and down-regulation of protein kinase C (PKC) resulted in reduced CREB phosphorylation after both M3 mACh and B2 bradykinin receptor activation. In contrast, inhibition of MEK1/2 by U0126 resulted in significantly reduced CREB phosphorylation levels after B2 bradykinin, but not M3 mACh receptor activation. In addition, we demonstrate that maintained phosphorylation of CREB is necessary for CRE-dependent gene transcription as the M3 mACh, but not the B2 bradykinin receptor activates both a recombinant CRE-dependent reporter gene, and the endogenous c-Fos gene. These data highlight the involvement of multiple, overlapping signalling pathways linking these endogenous Gq/11-coupled metabotropic receptors to CREB and emphasize the importance of the duration of signalling pathway activation in converting a CREB phosphorylation event into a significant change in transcriptional activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.