Abstract

The present study investigates the correlation between the hypoxia-induced phosphorylation of cyclic AMP response element binding protein and the expression of apoptotic proteins (proapoptotic proteins Bax and Bad and antiapoptotic proteins Bcl-2 and Bcl-xl) during hypoxia in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx) and hypoxic (Hx, FiO(2)=0.06 for 1 h) groups. Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Ser(133) phosphorylation of cyclic AMP response element binding (CREB) protein was determined by Western blot analysis using a specific anti-phosphorylated Ser(133)-CREB protein antibody. The expression of apoptotic proteins was determined by using specific anti-Bax, anti-Bad, anti-Bcl-2 and anti-Bcl-xl antibodies. ATP and PCr values (mumoles/g brain) in Hx were significantly different from Nx (ATP: 4.40 +/- 0.39 in Nx vs. 1.19 +/- 0.44 in Hx, P<0.05 vs. Nx; PCr: 3.60 +/- 0.40 in Nx vs. 0.70 +/- 0.31 in Hx, P<0.05 vs. Nx). Ser(133) phosphorylated CREB protein (OD x mm(2)) was 74.55 +/- 4.75 in Nx and 127.13 +/- 19.36 in Hx (P<0.05 vs. Nx). The expression of proapoptotic proteins Bax and Bad increased and strongly correlated with the increase in CREB protein phosphorylation (correlation coefficient r=0.82 and r=0.85, respectively). The expression of antiapoptotic proteins Bcl-2 and Bcl-xl did not show correlation with CREB protein phosphorylation. We conclude that cerebral hypoxia results in differential regulation of CREB protein-mediated expression of proapoptotic and antiapoptotic proteins in the cerebral cortex of newborn piglets. We propose that the increased expression of proapoptotic vs antiapoptotic genes will lead to an increased potential for apoptotic programmed cell death in the Hx newborn brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call