Abstract
Previously we showed that hypoxia results in increased neuronal nuclear Ca 2+ influx, Ca 2+/calmodulin-dependent protein kinase IV activity (CaM KIV) and phosphorylation of c-AMP response element binding (CREB) protein. The aim of the present study was to understand the importance of neuronal nuclear Ca 2+ in the role of CaM KIV activation and CREB protein phosphorylation associated with hypoxia. To accomplish this the present study tests the hypothesis that clonidine administration will block increased nuclear Ca 2+ influx by inhibiting high affinity Ca 2+/ATPase and prevent increased CaM KIV activity and CREB phosphorylation in the neuronal nuclei of the cerebral cortex of hypoxic newborn piglets. To accomplish this piglets were divided in three groups: normoxic, hypoxic, and hypoxic-treated with clonidine. The piglets that were in the Hx + Cl group received clonidine 5 min prior to hypoxia. Cerebral tissue hypoxia was confirmed biochemically by tissue levels of ATP and phosphocreatine (PCr). The data show that clonidine prevents hypoxia-induced increase in CaM KIV activity and CREB protein phosphorylation. We conclude that the mechanism of hypoxia-induced activation of CaM KIV and CREB phosphorylation is nuclear Ca 2+ influx mediated. We speculate that nuclear Ca 2+ influx is a key step that triggers CREB mediated transcription of apoptotic proteins and hypoxic mediated neuronal death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.