Abstract

Action potential (AP) excitation requires a transient dominance of depolarizing membrane currents over the repolarizing membrane currents that stabilize the resting membrane potential. Such stabilizing currents, in turn, depend on passive membrane conductance (Gm), which in skeletal muscle fibers covers membrane conductances for K+ (GK) and Cl− (GCl). Myotonic disorders and studies with metabolically poisoned muscle have revealed capacities of GK and GCl to inversely interfere with muscle excitability. However, whether regulation of GK and GCl occur in AP-firing muscle under normal physiological conditions is unknown. This study establishes a technique that allows the determination of GCl and GK with a temporal resolution of seconds in AP-firing muscle fibers. With this approach, we have identified and quantified a biphasic regulation of Gm in active fast-twitch extensor digitorum longus fibers of the rat. Thus, at the onset of AP firing, a reduction in GCl of ∼70% caused Gm to decline by ∼55% in a manner that is well described by a single exponential function characterized by a time constant of ∼200 APs (phase 1). When stimulation was continued beyond ∼1,800 APs, synchronized elevations in GK (∼14-fold) and GCl (∼3-fold) caused Gm to rise sigmoidally to ∼400% of its level before AP firing (phase 2). Phase 2 was often associated with a failure to excite APs. When AP firing was ceased during phase 2, Gm recovered to its level before AP firing in ∼1 min. Experiments with glibenclamide (KATP channel inhibitor) and 9-anthracene carboxylic acid (ClC-1 Cl− channel inhibitor) revealed that the decreased Gm during phase 1 reflected ClC-1 channel inhibition, whereas the massively elevated Gm during phase 2 reflected synchronized openings of ClC-1 and KATP channels. In conclusion, GCl and GK are acutely regulated in AP-firing fast-twitch muscle fibers. Such regulation may contribute to the physiological control of excitability in active muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.