Abstract
The timing of granule cell migration in the developing cerebellum is regulated by thyroid hormone. Granule cell migration depends on the recognition of extracellular neuronal guidance molecule(s), such as laminin, and this, in turn, requires cell surface adhesion molecules (integrins) that are anchored on the cell membrane by the actin cytoskeleton. While many of the actions of thyroid hormone, specifically 3,5,3′-triiodothyronine (T 3), are mediated by regulated gene expression, both thyroxine (T 4) and 3,3′,5′-triiodothyronine (rT 3) also exert direct, positive control of the quantity of polymerized actin in cultured astrocytes without affecting gene expression. T 4-dependent actin polymerization has been shown to (i) participate in the immobilization of laminin to the cell surface, (ii) help deposit laminin in the molecular layer of the developing cerebellum, and (iii) anchor integrin(s) that recognize laminin present in the extracellular matrix. In this study, we show that both T 4 and rT 3, but not T 3, directly regulate the F-actin content of elongating neurites of cerebellar neurons. T 4 and rT 3 also promoted extensive granule cell migration from cerebellar explants, as well as, dense cell clustering and extensive neuronal process formation when granule cells were grown on a laminin-coated surface. Both granule cell migration and neuronal process outgrowth were markedly attenuated by the addition of integrin-blocking antibodies or binding peptides, by the absence of thyroid hormone or the presence of T 3. These data suggest that the T 4-dependent actin polymerization in developing neurons is necessary for these migrating cells to recognize the laminin guidance molecule, thereby providing a novel molecular mechanism for the profound influence of thyroid hormone on brain development that is independent of regulated gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.