Abstract

Melatonin (MT) may work as a neuromodulator through the associated MT receptors in the central nervous system. Previously, our studies have shown that MT increased the I(K) current via a G protein-related pathway. In the present study, patch-clamp whole-cell recording, transwell migration assays and organotypic cerebellar slice cultures were used to examine the effect of MT on granule cell migration. MT increased the I(K) current amplitude and migration of granule cells. Meanwhile, TEA, the I(K) channel blocker, decreased the I(K) current and slowed the migration of granule cells. Furthermore, the effects of MT on the I(K) current and cell migration were not abolished by pre-incubation with P7791, a specific antagonist of MT(3)R, but were eliminated by the application of the MT(2)R antagonists K185 and 4-P-PDOT. I(K) current and cell migration were decreased by the application of dibutyryl cyclic AMP (dbcAMP), which was in contrast to the MT effect on the I(K) current and cell migration. Incubation with dbcAMP essentially blocked the MT-induced increasing effect. Moreover, incubation of isolated cell cultures in the MT-containing medium also decreased the cAMP immunoreactivity in the granule cells. It is concluded, therefore, that I(K) current, downstream of a cAMP transduction pathway, mediates the migration of rat cerebellar granule cells stimulated by MT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.