Abstract

Abstract Various neural factors are involved in the suckling-induced increase in serum growth hormone (GH) levels in neonatal rats, and, in the present study the serotonergic, cholinergic, somatostatin and GH-releasing hormone (GHRH) systems were investigated. The serotonin (5-HT) precursor 5-hydroxy-L-tryptophan (5-HTP) and the 5-HT receptor agonist quipazine maleate stimulated serum GH levels in 2-day-old rat pups separated from their mothers for 6 h. The increase in serum GH during suckling was further elevated by 5-HTP. The 5-HT antagonist cyproheptadine decreased serum GH levels in separated 2-day-old pups, and although it reduced the amplitude of the suckling-induced increase in serum GH concentration, it did not alter the increase in serum GH on a percentage basis. The effect of the cholinergic muscarinic antagonist atropine sulfate (ATR) was similar to that of cyproheptadine. Moreover, in separated pups, ATR prevented the increase in serum GH induced by 5-HTP. In contrast with 2-day-old pups, ATR completely eliminated the suckling-induced release of GH in 10-day-old rats. However, ATR failed to prevent GH release induced by the alpha(2)-adrenergic agonist clonidine HCI in 10-day-old male pups. While thyrotropin-releasing hormone increased serum GH levels, rat GHRH failed to alter serum GH levels either in separated or in suckled 2-day-old rat pups. Immunoneutralization for rat GHRH eliminated the increase in serum GH induced by clonidine HCI in 10-day-old pups, but (on a percentage basis) failed to prevent the GH-increasing effect of suckling in 2-day-old pups. While somatostatin failed to significantly decrease serum GH in separated 2-day-old pups, it effectively decreased serum GH levels in 2-day-old pups which were suckled. Cysteamine, which depletes hypothalamic somatostatin, increased serum GH in separated 2-day-old pups, and further increased the suckling-induced levels of serum GH. Cysteamine partially prevented the GH-decreasing effect of ATR. The present findings suggest that 1) the serotonergic and cholinergic systems are involved in the regulation of GH secretion as early as day 2 postpartum; 2) the serotonergic and cholinergic systems modulate the basal, and do not modulate the suckling-induced levels of serum GH; 3) the serotonergic system may exert its stimulatory influence on GH secretion only in the presence of a functional muscarinic cholinergic system; 4) the cholinergic system, at least in part, stimulates GH secretion via a cysteamine-sensitive system (probably by inhibiting somatostatin); 5) the cholinergic system is not functionally coupled with the alpha(2)-adrenergic system, which stimulates GH secretion via rat GHRH; 6) since in 10-day-old pups clonidine HCI was effective only in males, while suckling was effective in both sexes, the alpha(2)-adrenergic system is not involved in the suckling-induced increase of serum GH; and finally 7) neither somatostatin nor rat GHRH seem to be involved in the suckling-induced changes in serum GH. The findings are consistent with the hypothesis that the high circulating GH levels in the neonatal rat are due to alternative GH-releasing factors, perhaps thyrotropin-releasing hormone or gamma-aminobutyric acid. The neurohumoral mediator of the suckling-induced GH release in neonatal rats remains to be identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.