Abstract

The ammonium assimilatory enzymes glutamine synthetase (EC 6.3.1.2) and glutamate dehydrogenase (EC 1.4.1.3) were investigated for a possible role in the regulation of asparaginase (EC 3.5.1.1) in a Chlamydomonas species isolated from a marine environment. Cells grown under nitrogen limitation (0.1 millimolar NH(4) (+), NO(3) (-), or l-asparagine) possessed 6 times the asparaginase activity and approximately one-half the protein of cells grown at high nitrogen levels (1.5 to 2.5 millimolar). Biosynthetic glutamine synthetase activity was 1.5 to 1.8 times greater in nitrogen-limited cells than cells grown at high levels of the three nitrogen sources.Conversely, glutamate dehydrogenase (both NADH- and NADPH-dependent activities) was greatest in cells grown at high levels of asparagine or ammonium, while nitrate-grown cells possessed little activity at all concentrations employed. For all three nitrogen sources, glutamate dehydrogenase activity was correlated to the residual ammonium concentration of the media after growth (r = 0.88 and 0.94 for NADH- and NADPH-dependent activities, respectively).These results suggest that glutamate dehydrogenase is regulated in response to ambient ammonium levels via a mechanism distinct from asparaginase or glutamine synthetase. Glutamine synthetase and asparaginase, apparently repressed by high levels of all three nitrogen sources, are perhaps regulated by a common mechanism responding to intracellular nitrogen depletion, as evidenced by low cellular protein content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.