Abstract

Oxidative stress and highly specific decreases in glutathione (GSH) are associated with nerve cell death in Parkinson's disease. Using an experimental nerve cell model for oxidative stress and an expression cloning strategy, a gene involved in oxidative stress-induced programmed cell death was identified which both mediates the cell death program and regulates GSH levels. Two stress-resistant clones were isolated which contain antisense gene fragments of the translation initiation factor (eIF)2alpha and express a low amount of eIF2alpha. Sensitivity is restored when the clones are transfected with full-length eIF2alpha; transfection of wild-type cells with the truncated eIF2alpha gene confers resistance. The phosphorylation of eIF2alpha also results in resistance to oxidative stress. In wild-type cells, oxidative stress results in rapid GSH depletion, a large increase in peroxide levels, and an influx of Ca(2+). In contrast, the resistant clones maintain high GSH levels and show no elevation in peroxides or Ca(2+) when stressed, and the GSH synthetic enzyme gamma-glutamyl cysteine synthetase (gammaGCS) is elevated. The change in gammaGCS is regulated by a translational mechanism. Therefore, eIF2alpha is a critical regulatory factor in the response of nerve cells to oxidative stress and in the control of the major intracellular antioxidant, GSH, and may play a central role in the many neurodegenerative diseases associated with oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.