Abstract

Analysis of fadA and pkaA mutants in the filamentous fungus Aspergillus nidulans demonstrated that FadA (Galpha) stimulates cyclic AMP (cAMP)-dependent protein kinase A (PKA) activity resulting, at least in part, in inhibition of conidiation and sterigmatocystin (ST) biosynthesis. In contrast, cAMP added to the growth medium stimulates aflatoxin (AF) synthesis in Aspergillus parasiticus. Our goal was to explain these conflicting reports and to provide mechanistic detail on the role of FadA, cAMP, and PKA in regulation of AF synthesis and conidiation in A. parasiticus. cAMP or dibutyryl-cAMP (DcAMP) were added to a solid growth medium and intracellular cyclic nucleotide levels, PKA activity, and nor-1 promoter activity were measured in A. parasiticus D8D3 (nor1::GUS reporter) and TJYP1-22 (fadAGA2R, activated allele). Similar to Tice and Buchanan [34], cAMP or DcAMP stimulated AF synthesis (and conidiation) associated with an AflR-dependent increase in nor-1 promoter activity. However, treatment resulted in a 100-fold increase in intracellular cAMP/DcAMP accompanied by a 40 to 80 fold decrease in total PKA activity. ThefadAG42R allele in TJYP1-22 decreased AF synthesis and conidiation, increased basal PKA activity 10 fold, and decreased total PKA activity 2 fold. In TJYP1-22, intracellular cAMP increased 2 fold without cAMP or DcAMP treatment; treatment did not stimulate conidiation or AF synthesis. Based on these data, we conclude that: (1) FadA/PKA regulate toxin synthesis and conidiation via similar mechanisms in Aspergillus spp.; and (2) intracellular cAMP levels, at least in part, mediate a PKA-dependent regulatory influence on conidiation and AF synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.