Abstract

The temporal profile of Arc gene expression after acute and chronic electroconvulsive stimulations (ECS) was studied using semi-quantitative in situ hybridisation in the rat cortex. A single ECS strongly and temporarily increased Arc mRNA levels in dentate granular cells with maximal induction seen up to 4 h after the stimulus, but returned to baseline at 24 h. A single ECS also increased expression of Arc mRNA in the CA1 and the parietal cortex, but the expression peaked within 1 h and returned to baseline levels within 2 h. Repeated or chronic ECS is a model of electroconvulsive therapy and it would be predicted that gene products involved in antidepressant effects accumulate after repeated ECS. However, repeated ECS reduced Arc gene expression in the CA1 24 h after the last stimulus. These results indicate that Arc is an immediate early gene product regulated by an acute excitatory stimulus, but not accumulated by long term repetitive ECS and therefore not a molecular biomarker for antidepressant properties. More likely, Arc is likely a molecular link to the decline in memory consolidation seen in depressive patients subjected to electroconvulsive therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.