Abstract
Entorhinal cortex (EC) LIII and LII glutamatergic neurons make monosynaptic connections onto distal apical dendrites of hippocampal CA1 and CA2 pyramidal neurons (PNs), respectively, through perforant path (PP) projections. We previously reported that a brief train of PP stimuli evokes strong supralinear temporal summation of excitatory postsynaptic potentials (EPSPs) in CA1 PNs that requires NMDAR activation, with relatively little summation in CA2 PNs in mice of either sex. Here we provide evidence from combined immunogold electron microscopy, cell-type specific genetic deletion and pharmacology that the NMDARs required for supralinear temporal summation of the CA1 PP EPSP are presynaptic, located in the PP terminals. Moreover, we found that the number of NMDARs in PP terminals innervating CA1 PNs is significantly greater than that found in PP terminals innervating CA2 PNs, providing a potential explanation for the difference in temporal summation in these two classes of hippocampal PNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.