Abstract

Acyl-coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the formation of intracellular cholesterol esters in various tissues. We recently reported the cloning and expression of human macrophage ACAT cDNA. In the current study, we report the production of specific polyclonal antibodies against ACAT by immunizing rabbits with the recombinant fusion protein composed of glutathione S-transferase and the first 131 amino acids of ACAT protein. Immunoblot analysis showed that the antibodies cross-reacted with a 50-kDa protein band from a variety of human cell lines. These antibodies immunodepleted more than 90% of detergent-solubilized ACAT activities from six different human cell types, demonstrating that the 50-kDa protein is the major ACAT catalytic component in these cells. In multiple human tissues examined, the antibodies recognized protein bands with various molecular weights. These antibodies also cross-reacted with the ACAT protein in Chinese hamster ovary cells. Immunoblot analysis showed that the ACAT protein contents in human fibroblast cells, HepG2 cells, or Chinese hamster ovary cells were not affected by sterol in the medium, demonstrating that the main mechanism for sterol-dependent regulation of ACAT activity in these cells is not change in ACAT protein content. As revealed by indirect immunofluorescent microscopy, the ACAT protein in tissue culture cells was located in the endoplasmic reticulum. This finding, along with earlier studies, suggests that cholesterol concentration in the endoplasmic reticulum may be the major determinant for regulating ACAT activity in the intact cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.