Abstract

How to simultaneously utilize photogenerated electrons and holes still remains a critical challenge in the field of artificial photosynthesis, especially in the process of photocatalytic hydrogen (H2) evolution coupled with biomass oxidation to value-added chemicals. Herein, a series-parallel photocatalyst (Cu NPs/CdS/In2O3) that can intrinsically regulate the transfer of photogenerated carriers is ingeniously designed for photocatalytic H2 evolution synergized with furfural alcohol (FFA) selective oxidation to furfural (FF). Accordingly, the desired H2 and FF evolution rates with near 100% selectivity toward FF are achieved on Cu NPs/CdS/In2O3 in a sealed atmospheric system. Experimental and theoretical analyses confirm that the localized surface plasmon resonance (LSPR) effect induced by Cu NPs accelerates the reduction of protons (H+) to H2 efficiently, while the photogenerated holes from In2O3 preferentially activate the α-C-H bond of FFA adsorbed on Lewis acid sites to generate FF. This work provides a reference for regulating the transfer of photogenerated carriers for H2 evolution coupled with FF synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.