Abstract

Some nonstoichiometric semiconductors exhibit excellent near-infrared (NIR) absorption due to their unique localized surface plasmon resonance (LSPR) effect, which is conducive to improving efficiency of light energy conversion to make them promising candidates for efficient photocatalytic hydrogen (H2) evolution. Herein, we constructed a novel 1D/1D MoO3-x/Mn0.3Cd0.7S (MO/MCS) S-scheme heterojunction with LSPR and photothermal double effects for boosted full solar spectrum-driven H2 evolution. The light absorption of MO/MCS was expanded to NIR region through the LSPR effect of MO. Meanwhile, the impressive photothermal effect of MO can increase the surface temperature of the photocatalyst particles under light irradiation, which can further accelerate the photoreaction. According to the experimental and theoretical calculation results, the formation of S-scheme heterojunction was confirmed, which boosted the separation of photo-induced carriers. Consequently, the H2 evolution performance of judiciously designed MO/MCS composites was significantly enhanced with an optimal H2 evolution of 2.235 mmol·g−1·h−1, 30.6 times that of pure MCS. This work provides a valuable insight into the development of highly efficient full solar spectrum-driven photocatalysts through utilizing the synergetic effects of LSPR effect, photothermal effect, and S-scheme heterojunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call