Abstract
The overlapping of the electric double layer (EDL) in a nanochannel yields many interesting and significant electrokinetic phenomena such as ionic current rectification (ICR), which occurs only at a relatively low bulk salt concentration (∼1 mM) where the EDL thickness is comparable to the nanochannel size. In an attempt to raise this concentration to higher levels and the ICR performance improved appreciably, a branched nanochannel filled with polyelectrolytes (PEs) is proposed in this study. We show that these objectives can be achieved by choosing appropriate PE. For example, if the stem side of an anodic aluminun oxide nanochannel is filled with polystyrene sulfonate (PSS) an ICR ratio up to 850 can be obtained at 1 mM, which was not reported in previous studies. Taking account of the effect of electroosmotic flow, the underlying mechanisms of the ICR phenomena observed are discussed and the influences of the solution pH, the bulk salt concentration, and how the region(s) of a nanochannel is filled with PE examined. We show that the ICR behavior of a branched nanochannel can be modulated satisfactorily by filling highly charged PE and the solution pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.