Abstract
Abstract Considering various potential applications of charged nanochannels, we studied theoretically the electric field driven ion transport in a conical nanochannel connecting two large, identical reservoirs filled with an aqueous KCl solution. Taking account of the effect of electroosmotic flow (EOF), the associated electrokinetic behaviors under various conditions are examined, focusing on the influences of the temperature and the bulk salt concentration on the degree of ionic current rectification (ICR) and the conductance. Assuming that the bulk salt concentration ranges from 1 to 1000 mM and temperature from 278 to 313 K, we show that neglecting the EOF effect will either underestimate or overestimate the ionic current, and can lead to ca. 90% deviation in the degree of ICR. In general, the higher the temperature the greater the conductance and the less significant the ICR effect, and the degree of this effect has a local maximum as the bulk salt concentration varies. A three dimensional plot correlating the ICR effect with the bulk salt concentration and the temperature is prepared for the design of the nanochannel-based thermal gates for ionic transport.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Taiwan Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.