Abstract

Silk fibroin (SF) has become a promising biomaterial in guided bone regeneration (GBR). In an attempt to modify the size of the gaps on the surface of SF barrier membrane and improve its antibacterial activity, biological and mechanical properties, positively charged Lysozyme (LY)-Collagen Type-I (COL) composites and negatively charged SF were introduced to the negatively charged surface of SF substrates utilizing the electrostatic layer-by-layer (LBL) self-assembly technique. The morphology, chemical structures and element content of the LBL structured membranes were investigated. The results suggested that LY and COL were successfully assembled and the gaps between the folds on the surface of the membranes became smaller gradually with the increase of coated film numbers. Besides, the content of β-sheets of the membranes increased after deposition, which indicated the improvement of their mechanical properties. Moreover, the results of the measurement of immobilized LY and antibacterial assay not only revealed that the enzymatic catalysis and antibacterial activity of the samples enhanced with the increase of coated bilayer numbers but also implied that LBL modified membranes had better antibacterial activity when LY–COL was on the outermost layer. Furthermore, CCK-8 assay certified both SF membrane and LBL structured membranes could facilitate cell growth and proliferation, and the introduction of COL could further promote this ability. Finally, cell attachment and morphology examination provided intuitional evidence that SF membrane and LBL modified membranes have excellent biocompatibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call