Abstract

Luminescent metal-organic gels (LMOGs) have gained much attention due to their crucial role in visual recognition and information encryption. However, it is still a challenge to simplify the design of ligands and enrich the stimuli responses in LMOGs simultaneously. Herein, although a single pyridine ligand cannot form gel alone, after coordination with metal ions, two kinds of LMOGs have been obtained with pyridine-metal complexes, where metal ions can act as cogelators and regulate luminescence of the pyridine-functionalized cyanostilbene ligand at the same time. The effects of metal types on the fluorescence emission color, the fluorescence quantum yield, the fibril network, and the assembly mode of the gel have been investigated systematically. In addition, two competitive ligands were used to regulate the fluorescence and phase transition of the gel. Finally, the logic gates and the information encryption and decryption have been successfully constructed. This kind of material is expected to be applied to fluorescence display, advanced information encryption, high-tech anticounterfeit, and so forth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.