Abstract
Room-temperature phosphorescent carbon dots (RTP-CDs) may be used in anti-counterfeiting, information encryption, and optoelectronic devices, but modulating their triplet-state energy is still challenging. Here, a type of RTP-CDs was developed via hydrothermal polymerization-carbonization of azamacrocycle and poly(acrylic acid). The introduction of nitrogen heterocycle promotes the intersystem crossing from the singlet state to the triplet state, and the functional groups of CDs can form interdot hydrogen bonds to protect the triplet state. In addition, the uncarbonized heterocycle groups in the CDs provide coordination sites for metal ions. In this case, the excited triplet-state energy of CDs is quenched by paramagnetic ions (Co2+ and Cu2+) or transfers to luminescent ions (Tb3+ and Eu3+). Furthermore, the modulation of the triplet state by metal ion binding was demonstrated in information encryption and anti-counterfeiting applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.