Abstract

AbstractThis article presents a new variational data assimilation (VDA) approach for the formal treatment of bias in both model outputs and observations. This approach relies on the Wasserstein metric, stemming from the theory of optimal mass transport, to penalize the distance between the probability histograms of the analysis state and an a priori reference dataset, which is likely to be more uncertain but less biased than both model and observations. Unlike previous bias‐aware VDA approaches, the new Wasserstein metric VDA (WM‐VDA) treats systematic biases of unknown magnitude and sign dynamically in both model and observations, through assimilation of the reference data in the probability domain, and can recover the probability histogram of the analysis state fully. The performance of WM‐VDA is compared with the classic three‐dimensional VDA (3D‐Var) scheme for first‐order linear dynamics and the chaotic Lorenz attractor. Under positive systematic biases in both model and observations, we consistently demonstrate a significant reduction in the forecast bias and unbiased root‐mean‐squared error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.