Abstract
AbstractClassical variational data assimilation methods address the problem of optimally combining model predictions with observations in the presence of zero‐mean Gaussian random errors. However, in many natural systems, uncertainty in model structure and/or model parameters often results in systematic errors or biases. Prior knowledge about such systematic model error for parametric removal is not always feasible in practice, limiting the efficient use of observations for improved prediction. The main contribution of this work is to advocate the relevance of transportation metrics for quantifying nonrandom model error in variational data assimilation for nonnegative natural states and fluxes. Transportation metrics (also known as Wasserstein metrics) originate in the theory of Optimal Mass Transport (OMT) and provide a nonparametric way to compare distributions which is natural in the sense that it penalizes mismatch in the values and relative position of “masses” in the two distributions. We demonstrate the promise of the proposed methodology using 1‐D and 2‐D advection‐diffusion dynamics with systematic error in the velocity and diffusivity parameters. Moreover, we combine this methodology with additional regularization functionals, such as the ‐norm of the state in a properly chosen domain, to incorporate both model error and potential prior information in the presence of sparsity or sharp fronts in the underlying state of interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.