Abstract

This paper addresses the problem of recognizing the speech uttered by patients with dysarthria, which is a motor speech disorder impeding the physical production of speech. Patients with dysarthria have articulatory limitation, and therefore, they often have trouble in pronouncing certain sounds, resulting in undesirable phonetic variation. Modern automatic speech recognition systems designed for regular speakers are ineffective for dysarthric sufferers due to the phonetic variation. To capture the phonetic variation, Kullback-Leibler divergence-based hidden Markov model (KL-HMM) is adopted, where the emission probability of state is parameterized by a categorical distribution using phoneme posterior probabilities obtained from a deep neural network-based acoustic model. To further reflect speaker-specific phonetic variation patterns, a speaker adaptation method based on a combination of L2 regularization and confusion-reducing regularization, which can enhance discriminability between categorical distributions of the KL-HMM states while preserving speaker-specific information is proposed. Evaluation of the proposed speaker adaptation method on a database of several hundred words for 30 speakers consisting of 12 mildly dysarthric, 8 moderately dysarthric, and 10 non-dysarthric control speakers showed that the proposed approach significantly outperformed the conventional deep neural network-based speaker adapted system on dysarthric as well as non-dysarthric speech.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.