Abstract
This paper concerns effective speaker adaptation methods to solve the over-training problem in speaker verification, which frequently occurs when modeling a speaker with sparse training data. While various speaker adaptations have already been applied to speech recognition, these methods have not yet been formally considered in speaker verification. This paper proposes speaker adaptation methods using a combination of maximum a posteriori (MAP) and maximum likelihood linear regression (MLLR) adaptations, which are successfully used in speech recognition, and applies to speaker verification. Our aim is to remedy the small training data problem by investigating effective speaker adaptations for speaker modeling. Experimental results show that the speaker verification system using a weighted MAP and MLLR adaptation outperforms that of the conventional speaker models without adaptation by a factor of up to 5 times. From these results, we show that the speaker adaptation method achieves significantly better performance even when only small training data is available for speaker verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.