Abstract
In this paper, the regularized finite difference contrast source inversion algorithm based on inverse scattering theory is utilized to invert the seismic velocity distribution in the underground medium, and this algorithm is a waveform inversion method in frequency domain based on wave equation. Velocity distribution is updated iteratively by minimizing the cost function using the nonlinear conjugate gradient method. The geophysical inversion problem has the characters of ill-posedness and instability, we handle this problem by adding an additional regularization item based on total variation of inversion parameter, making the inversion problem become a well-posed problem, and the algorithm has the ability of anti-noise interference. In the inversion process we use the frequency-space domain 9-point difference propagation operator under PML absorption boundary condition. Compared with other inversion algorithm, the construction of forward modeling operator and other matrix factorization calculation process can be avoided in each iterative step because the background medium remains unchanged throughout the inversion process, this makes the algorithm more suitable for large-scale three-dimensional inversion. In addition, the MPI parallel computation is applied, by which the efficiency of inversion process is improved greatly. The two-dimensional CSEG model inversion results show that this algorithm can obtain high resolution seismic velocity reconstruction, and provide an accurate velocity information for seismic data processing and interpretation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have