Abstract

We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspace methods. We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding preconditioned matrix. Inexact variants are also considered. Numerical results on saddle-point linear systems arising from the discretization of a Stokes problem and of a distributed control problem show that good performance can be achieved when using inexact variants of the proposed preconditioners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call