Abstract

Dynamical low-rank approximation (DLRA) for the numerical simulation of Vlasov–Poisson equations is based on separation of space and velocity variables, as proposed in several recent works. The standard approach for the time integration in the DLRA model uses a splitting of the tangent space projector for the low-rank manifold according to the separated variables. It can also be modified to allow for rank-adaptivity. A less studied aspect is the incorporation of boundary conditions in the DLRA model. In this work, a variational formulation of the projector splitting is proposed which allows to handle inflow boundary conditions on spatial domains with piecewise linear boundary. Numerical experiments demonstrate the principle feasibility of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.