Abstract

In this paper, the problem of restoring an image distorted by a linear space-invariant (LSI) point-spread function (PSF) that is not exactly known is formulated as the solution of a perturbed set of linear equations. The regularized constrained total least-squares (RCTLS) method is used to solve this set of equations. Using the diagonalization properties of the discrete Fourier transform (DFT) for circulant matrices, the RCTLS estimate is computed in the DFT domain. This significantly reduces the computational cost of this approach and makes its implementation possible even for large images. An error analysis of the RCTLS estimate, based on the mean-squared-error (MSE) criterion, is performed to verify its superiority over the constrained total least-squares (CTLS) estimate. Numerical experiments for different errors in the PSF are performed to test the RCTLS estimator. Objective and visual comparisons are presented with the linear minimum mean-squared-error (LMMSE) and the regularized least-squares (RLS) estimator. Our experiments show that the RCTLS estimator reduces significantly ringing artifacts around edges as compared to the two other approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.