Abstract

In this paper the problem of restoring an image distorted by a linear space-invariant point- spread function (psf) which is not exactly known is formulated as the solution of a perturbed set of linear equations. The regularized constrained total least-squares (RCTLS) method is used to solve this set of equations. Using the diagonalization properties of the discrete Fourier transform (DFT) for circulant matrices, the RCTLS estimate is computed in the DFT domain. This significantly reduces the computational cost of this approach and makes its implementation possible for large images. Numerical experiments for different psf approximations are performed to check the effectiveness of the RCTLS approach for this problem. Objective and subjective comparisons are presented with the linear minimum mean- squared-error and the regularized least-squares estimates, for 2D images, that verify the superiority of the RCTLS approach.© (1994) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.