Abstract
The performance of the L-curve criterion and of the generalized cross-validation (GCV) method for the Tikhonov regularization of the ill-conditioned normal equations associated with the determination of the gravity field from satellite gravity gradiometry is investigated. Special attention is devoted to the computation of the corner point of the L-curve, to the numerically efficient computation of the trace term in the GCV target function, and to the choice of the norm of the residuals, which is important for the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) in the presence of colored observation noise. The trace term in the GCV target function is estimated using an unbiased minimum-variance stochastic estimator. The performance analysis is based on a simulation of gravity gradients along a 60-day repeat circular orbit and a gravity field recovery complete up to degree and order 300. Randomized GCV yields the optimal regularization parameter in all the simulations if the colored noise is properly taken into account. Moreover, it seems to be quite robust against the choice of the norm of the residuals. It performs much better than the L-curve criterion, which always yields over-smooth solutions. The numerical costs for randomized GCV are limited provided that a reasonable first guess of the regularization parameter can be found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.