Abstract

We analyze nonlinear stochastic optimization problems with probabilistic constraints on nonlinear inequalities with random right hand sides. We develop two numerical methods with regularization for their numerical solution. The methods are based on first order optimality conditions and successive inner approximations of the feasible set by progressive generation of p-efficient points. The algorithms yield an optimal solution for problems involving α-concave probability distributions. For arbitrary distributions, the algorithms solve the convex hull problem and provide upper and lower bounds for the optimal value and nearly optimal solutions. The methods are compared numerically to two cutting plane methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.