Abstract

We consider nonlinear stochastic optimization problems with probabilistic constraints. The concept of a p-efficient point of a probability distribution is used to derive equivalent problem formulations, and necessary and sufficient optimality conditions. We analyze the dual functional and its subdifferential. Two numerical methods are developed based on approximations of the p-efficient frontier. The algorithms yield an optimal solution for problems involving r-concave probability distributions. For arbitrary distributions, the algorithms provide upper and lower bounds for the optimal value and nearly optimal solutions. The operation of the methods is illustrated on a cash matching problem with a probabilistic liquidity constraint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.