Abstract

In the analysis of multibody dynamics, we are often required to deal with singularity problems where the constraint Jacobian matrix may become less than full rank at some instantancous configurations. This creates numerical instability which will affect the performance of the mechanical system. A modification procedure of the constraints when they vanish or become linearly dependent is proposed to regularize the dynamics of the system. A distinction between the asymptotic stability due to the representation of the constraints (at the velocity and acceleration level), and the one due to the singularity is discussed in full in this paper. It is shown that Baumgarte technique could be extended to accommodate the representation of the constraints in the neighborhood of singularity. A two link planar manipulator undergoing large motion and passing through a singular configuration is used to illustrate the proposed stability technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.