Abstract
Abstract The class of (k; h1; h2)-convex functions is introduced, together with some particular classes of corresponding generalized convex dominated functions. Few regularity properties of (k; h1; h2)-convex functions are proved by means of Bernstein-Doetsch type results. Also we find conditions in which every local minimizer of a (k; h1; h2)-convex function is global. Classes of (k; h1; h2)-convex functions, which allow integral upper bounds of Hermite-Hadamard type, are identified. Hermite-Hadamard type inequalities are also obtained in a particular class of the (k; h1; h2)- convex dominated functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of West University of Timisoara - Mathematics and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.