Abstract

We prove the first regularity theorem for the free boundary of solutions to shape optimization problems involving integral functionals, for which the energy of a domain Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega $$\\end{document} is obtained as the integral of a cost function j(u, x) depending on the solution u of a certain PDE problem on Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega $$\\end{document}. The main feature of these functionals is that the minimality of a domain Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega $$\\end{document} cannot be translated into a variational problem for a single (real or vector valued) state function. In this paper we focus on the case of affine cost functions j(u,x)=-g(x)u+Q(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$j(u,x)=-g(x)u+Q(x)$$\\end{document}, where u is the solution of the PDE -Δu=f\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-\\Delta u=f$$\\end{document} with Dirichlet boundary conditions. We obtain the Lipschitz continuity and the non-degeneracy of the optimal u from the inwards/outwards optimality of Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega $$\\end{document} and then we use the stability of Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega $$\\end{document} with respect to variations with smooth vector fields in order to study the blow-up limits of the state function u. By performing a triple consecutive blow-up, we prove the existence of blow-up sequences converging to homogeneous stable solution of the one-phase Bernoulli problem and according to the blow-up limits, we decompose ∂Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial \\Omega $$\\end{document} into a singular and a regular part. In order to estimate the Hausdorff dimension of the singular set of ∂Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial \\Omega $$\\end{document} we give a new formulation of the notion of stability for the one-phase problem, which is preserved under blow-up limits and allows to develop a dimension reduction principle. Finally, by combining a higher order Boundary Harnack principle and a viscosity approach, we prove C∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^\\infty $$\\end{document} regularity of the regular part of the free boundary when the data are smooth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call