Abstract

Epi-derivatives have many applications in optimization as approached through nonsmooth analysis. In particular, second-order epi-derivatives can be used to obtain optimality conditions and carry out sensitivity analysis. Therefore the existence of second-order epi-derivatives for various classes of functions is a topic of considerable interest. A broad class of composite functions on ℝ n called ‘fully amenable’ functions (which include general penalty functions composed withC 2 mappings, possibly under a constraint qualification) are now known to be twice epi-differentiable. Integral functionals appear widely in problems in infinite-dimensional optimization, yet to date, only integral functionals defined by convex integrands have been shown to be twice epi-differentiable, provided that the integrands are twice epi-differentiable. Here it is shown that integral functionals are twice epi-differentiable even without convexity, provided only that their defining integrands are twice epi-differentiable and satisfy a uniform lower boundedness condition. In particular, integral functionals defined by fully amenable integrands are twice epi-differentiable under mild conditions on the behavior of the integrands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.