Abstract

We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.