Abstract

The regular hybrid boundary node method (RHBNM) is a new technique for the numerical solutions of the boundary value problems. By coupling the moving least squares (MLS) approximation with a modified functional, the RHBNM retains the meshless attribute and the reduced dimensionality advantage. Besides, since the source points of the fundamental solutions are located outside the domain, ‘boundary layer effect’ is also avoided. However, an initial restriction of the present method is that it is only suitable for the problems which the governing differential equation is in second order. Now, a new variational formulation for the RHBNM is presented further to solve the biharmonic problems, in which the governing differential equation is in fourth order. The modified variational functional is applied to form the discrete equations of the RHBNM. The MLS is employed to approximate the boundary variables, while the domain variables are interpolated by a linear combination of fundamental solutions of both the biharmonic equation and Laplace’s equation. Numerical examples for some biharmonic problems show that the high accuracy with a small node number is achievable. Furthermore, the computation parameters have been studied. They can be chosen in a wide range and have little influence on the results. It is shown that the present method is effective and can be widely applied in practical engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.