Abstract
Face alignment is the process of determining a face shape given its location and size in an image. It is used as a basis for other facial analysis tasks and for human-machine interaction and augmented reality applications. It is a challenging problem due to the extremely high variability in facial appearance affected by many external (illumination, occlusion, head pose) and internal factors (race, facial expression). However, advances in deep learning combined with domain-related knowledge from previous research recently demonstrated impressive results nearly saturating the unconstrained benchmark data sets. The focus is shifting towards reducing the computational burden of the face alignment models since real-time performance is required for such a highly dynamic task. Furthermore, many applications target devices on the edge with limited computational power which puts even greater emphasis on computational efficiency. We present the latest development in regression-based approaches that have led towards nearly solving the face alignment problem in an unconstrained scenario. Various regression architectures are systematically explored and recent training techniques discussed in the context of face alignment. Finally, a benchmark comparison of the most successful methods is presented, taking into account execution time as well, to provide a comprehensive overview of this dynamic research field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.