Abstract

This note describes the application of Gaussian mixture regression to track fitting with a Gaussian mixture model of the position errors. The mixture model is assumed to have two components with identical component means. Under the premise that the association of each measurement to a specific mixture component is known, the Gaussian mixture regression is shown to have consistently better resolution than weighted linear regression with equivalent homoskedastic errors. The improvement that can be achieved is systematically investigated over a wide range of mixture distributions. The results confirm that with constant homoskedastic variance the gain is larger for larger mixture weight of the narrow component and for smaller ratio of the width of the narrow component and the width of the wide component.

Highlights

  • In the data analysis of high-energy physics experiments, and in track fitting, Gaussian models of measurements errors or Gaussian models of stochastic processes such as multiple Coulomb scattering and energy loss of electrons by bremsstrahlung may turn out to be too simplistic or downright invalid

  • In the application to track fitting, heteroskedastic mixture models can be useful in non-uniform tracking detectors, in which the mixture model obtained by the calibration depends on the layer or on the sensor or on the possible cluster types

  • The third study investigates the effect of multiple Coulomb scattering (MCS) on the results presented in the previous subsection

Read more

Summary

Introduction

In the data analysis of high-energy physics experiments, and in track fitting, Gaussian models of measurements errors or Gaussian models of stochastic processes such as multiple Coulomb scattering and energy loss of electrons by bremsstrahlung may turn out to be too simplistic or downright invalid. In these circumstances Gaussian mixture models (GMMs) can be used in the data analysis to model outliers or tails in position measurements of tracks [1,2], to model the tails of the multiple Coulomb scattering distribution [3,4], or to approximate the distribution of the energy loss of electrons by bremsstrahlung [5] In these applications it is not known to which component an observation or a physical process corresponds, and it is up to the track fit via the Deterministic Annealing Filter or the Gaussian-sum Filter to determine the association probabilities [6,7,8,9].

Linear Gaussian Regression Models
Nonlinear Gaussian Regression Models
Linear Regression in Gaussian Mixture Models
Homoskedastic Mixture Models
Heteroskedastic Mixture Models
Simulation Study with Straight Tracks
Simulation Study with Circular Tracks
Simulation Study with Circular Tracks and Multiple Scattering
Findings
Summary and Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.