Abstract
Gaussian mixture model (GMM) and Gaussian mixture regression (GMR) can be used to detect adulteration in extra virgin olive oil. The estimate of the GMM parameters is commonly obtained from the expectation- maximization (EM) algorithm. EM algorithm has some limitations such as local optimum problems and sensitivity to the initial values. In this paper, artificial bee colony (ABC) algorithm is used to determine the optimal parameters in GMM and GMR. To improve the optimized performance and reduce computational effort of ABC algorithm, the information sharing mechanism among the global best food sources is introduced in ABC. The improved GMM and GMR by artificial bee colony algorithm (GMMRABC) were used to discriminate and quantify the adulteration of extra virgin olive oil with rapeseed oil using FT-IR spectroscopy. It has been demonstrated that the proposed method is an accurate, rapid, stable strategy for identifying and quantifying the extra virgin olive oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.