Abstract
Partial least squares (PLS) regression is widely used to capture the latent relationship between inputs and outputs in static system modeling. Several dynamic PLS algorithms have been proposed to capture the characteristics of dynamic data. However, none of these algorithms provides an explicit expression for the dynamic inner and outer models. In this paper, a dynamic inner PLS algorithm is proposed for dynamic data modeling. The proposed algorithm provides an explicit dynamic inner model that is ensured in deriving the outer model. Several examples are presented to demonstrate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.