Abstract

This work investigated the properties of Paracoccus yeei VKM B-3302 bacteria isolated from activated sludge and immobilized in an N-vinylpyrrolidone-modified poly(vinyl alcohol) matrix. The developed hydrogel formed a network structure to enable the entrapment of microbial cells with their viability and biocatalytic properties preserved, which ensured the technological possibility of replicating expendable biosensor receptor elements. A new ratio of the components for the synthesis selected in this work enabled producing a copolymer of an earlier undescribed chemical structure, which can be efficiently used for immobilization of highly sensitive P. yeei bacteria. A biological oxygen demand (BOD) biosensor with these bacteria and matrix was shown to possess a long-time stability exceeding that described earlier, to have a broad substrate specificity and to exceed approximately tenfold the nearest analogues by its sensitivity and the lower boundary value of 0.05mg/dm3. The biosensor enabled assays of water samples initially attributed to pure samples (the BOD range, 0.05-5.0mg/dm3). BOD assays of water samples from various sources showed the use of the receptor element of this composition to enable the data that closely correlated with the standard method (R 2 = 0.9990).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.