Abstract

A novel biosensor for the determination of biochemical oxygen demand (BOD) was developed using potassium hexacyanoferrate(III) [HCF(III)] as a mediator. The sensor element consists of a three-electrode system, with both working and counter electrodes compactly integrated as a disposable using etching and electroplating processes. Pseudomonas fluorescens biovar V (isolated from a wastewater treatment plant) was immobilized on the surface of the working electrode using poly(vinyl alcohol)-quaternized stilbazol (PVA-SbQ) photopolymer gel. Synthetic wastewater described by the Organization for Economic Cooperation and Development (OECD) was used as a standard solution instead of glucose-glutamic acid synthetic wastewater. The conditions of amperometric measurement were optimized at +600 mV (vs. Ag/AgCl) operating potential, namely 40 mM HCF(III) in a 0.1 M phosphate buffer (pH 7.0) at 20 degrees C. The sensor response was linear from 15 up to 200 mg O l-1 BOD. The response time was 15 min at 200 mg O l-1 BOD. To demonstrate the wide metabolic range of activity of the sensor, the sensor response to 14 substances in four categories of organic compounds was investigated. Further, it was shown that the response of this BOD sensor was not influenced in samples with low concentrations of dissolved oxygen under the measuring conditions used. For real wastewaters, the BOD values were determined using the sensor and compared favorably with those determined by the conventional BOD5 method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.