Abstract
High performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry (HPLC-APCI MS) was applied to the characterisation of triacylglycerols (TAGs) in animal fats. The major TAGs in four fats (beef, chicken, lamb and pork) were identified and positional isomers assigned according to their APCI mass spectra. Beef and lamb fat TAGs were confirmed as containing higher proportions of saturated fatty acids compared with those of chicken and pork. HPLC-APCI MS was also shown to be of value in providing regiospecific information for the fatty acids in individual TAG species. For example, beef and lamb fat were shown to contain both cis- and trans-isomers of the 18:1 fatty acid, whilst chicken and pork contained only the cis-isomer. When the position of fatty acid substitution was determined from the APCI spectra, whilst the cis- 18:1 was predominantly found in the 2-position of the TAG, the trans-18:1 showed a preference for the 1/3-position. Similarly, it was confirmed that although the 2-position of beef, chicken and lamb fat TAGs was dominated by unsaturated fatty acids, in pork fat, a characteristically high proportion of palmitic acid was seen in this position. The TAGs identified compared well with those reported previously. The distributions of 2-position fatty acids seen in lamb and pork fat compared favourably with those obtained by the more traditional method of lipase degradation. Although the distributions for chicken and beef showed some discrepancies, these can be attributed to weaknesses in the quantification procedure or the specificity of the lipase. Overall, the technique of HPLC-APCI MS has been shown to be very powerful for the regiospecific analysis of animal fats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.