Abstract

Conceptual density functional theory, including chemical hardness, electronic chemical potential, global and local electrophilicity index and Fukui functions, is used to predict reactivity and regioselectivity of 1,3-dipolar cycloadditions (13DCs) between five aryl azides (1–5) and an electron-deficient alkyne at the B3LYP/6-31G(d,p) level. Two reaction paths (a) and (b) are considered which result in the corresponding regioisomeric 1,2,3-triazoles P(1-5)a and P(1-5)b, respectively. All the 13DCs proceed via rather asynchronous TSs and the path (b) is clearly more synchronous than the path (a). All the reactions are high exoergic [∆Go = −45.1 to −51.4 kcal/mol for path (a) and −47.7 to −55.9 kcal/mol for path (b)] with the moderate and nearly similar activation barriers (E a = 15.4–16.7 kcal/mol) referring a relatively low regioselectivity. All reactivity descriptors but one clearly suggest that path (a) is somewhat preferred over path (b). FMO interactions occur between HOMO13DP and LUMODPh due to the corresponding lower energy gap. All the reactions considered in this work classified as polar 13DCs with NED character. Our theoretical results are in good agreement with those reported experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.