Abstract

Chitosan derivatives with two different phenylcarbamate pendants at the 6-position and 2,3-positions of the glucosamine unit were synthesized by triphenylmethyl as a protective group. The regioselective chitosan derivatives were prepared corresponding to coated-type chiral packed materials (CPMs), which were evaluated with thirteen chiral compounds by high-performance liquid chromatography (HPLC). The regioselective chitosan derivatives (4aⅠ/4aⅡ, 4bⅠ/4bⅡ) bearing electron-withdrawing 3,5‑chloro or 4‑chloro at the 6-position can recognize 7 or 8 of the 13 enantiomers and achieve baseline separation for enantiomers 5 and 7. They exhibited better chiral recognition abilities than the other derivatives with different substituents at the 6-position and the same 3,5-dimethylphenyl substituent at the 2,3-postion. In comparison to Chit-1 featuring a 3,5-dimethylphenyl substituent at the 2,3- and 6-positions, it was observed that the combination of both an electron-withdrawing and an electron-donating substituent of the regioselective chitosan derivatives (4aⅠ/4aⅡ, 4bⅠ/4bⅡ) showed better or similar enantioseparation abilities for racemic Compounds 7 and 6, respectively. The molecular weight-performance relationship of the regioselective chitosan derivatives was investigated in detail. It was found that with increasing molecular weight, the derivatives 4aⅡ and 4bⅡ all possessed greater enantioseparation power for 4 enantiomers, such as enantiomers 4, 7, 11, and 15, than the corresponding derivatives with low molecular weights. The molecular docking simulation results showed that excellent enantioseparation power significantly depended on the combination and interaction of multiple factors, such as steric hindrance, and polarity of the substituents on the CPMs and enantiomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call